pfSense Multi-WAN Configuration: Part Four

pfSense multi-WAN

Setting up multi-WAN load balancing with failover in pfSense 2.2.4

The load balancing functionality in pfSense allows you to distribute traffic over multiple WAN connections in a round-robin fashion. This is done on a per-connection basis. A monitoring IP is configured for each connection, which pfSense will ping, if the pings fail, the interface is marked as down and removed from all pools until the pings succeed again.

pfSense Multi-WAN: Load Balancing 

In pfSense 2.0 and above, Services -> Load Balancer is not used to configure load balancing with a multi-WAN setup. Instead, we use Gateway Groups by navigating to System -> Routing and clicking on the Groups tab. Click the plus button to add a new gateway group.

In the Group Name field, you can enter a group name. The Gateway Priority section is where you configure load balancing. The Tier field determines the link priority in the failover group. Lower-numbered tiers have priority over higher-numbered tiers. Multiple links of the same priority will balance connections until all links at that level are exhausted. If all links in a priority level are exhausted, pfSense will use the next available link in the next priority level.

To illustrate how this works, I created three gateways: WAN, WAN1 and WAN2, as can be seen in the screen capture. Let’s assume that the WAN gateway is my main Internet connection (e.g. a cable modem). Assume that the WAN1 and WAN2 gateways are for my backup Internet connections (e.g. DSL). We want WAN to provide our primary connection to the Internet. When WAN is down, we want our Internet connectivity to be load balanced across WAN1 and WAN2. Therefore, we set WAN to Tier 1 and both WAN1 and WAN2 to Tier 2. Thus, when the higher priority WAN is down, the failover will user WAN1 and WAN2. If either WAN1 or WAN2 go down, pfSense will use the remaining functioning gateway, so that even if two of the gateways are down, we should have some Internet connectivity, albeit with limited bandwidth.

The next field in the table, Virtual IP, allows you to select what virtual IP should be used when the gateway group applies to a local Dynamic DNS, IPsec or OpenVPN endpoint. In my example, since I was not setting up the gateway group to be used in any such scenario, I left this field unchanged.

The next field, Trigger Level, allows you to choose which events trigger exclusion of a gateway. The choices are Member Down, Packet Loss, High Latency, and Packet Loss or High Latency. I chose Packet Loss as the trigger. You can enter a brief Description, and press the Save button. On the next page, you’ll need to press the Apply Changes button.

Next, you need to redirect your firewall traffic to the new gateway. Navigate to Firewall -> Rules, and click on the tab of the interface whose traffic you want to redirect (e.g. LAN). Press the plus button to add a new rule. The default settings can be kept for most settings (Source and Destination should both be set to any). Scroll down to Advanced features, and press the Advanced button in the Gateway section. Select the gateway set up in the previous step in the dropdown box. Enter a brief Description, and press the Save button. On the next page, press the Apply Changes button. If you need to redirect traffic on other interfaces, you will have to set up firewall rules for those interfaces as well.

Finally, you need to navigate to System -> General Setup and make sure you have at least one DNS server for each ISP. This ensures that you still have DNS service if one or more gateways goes down. You may need to set up static routes for your DNS servers; part two of this series went into some detail on how to do this.

Once the gateway groups and firewall rules are configured, your multi-WAN load balancing setup should be complete.

External Links:

Network Load Balancing on Wikipedia

Be Sociable, Share!

Speak Your Mind

*

© 2013 David Zientara. All rights reserved. Privacy Policy