Python Sets: Part Two

Python setsIn part one of this series, we took a first look at sets, a relatively new core data type in Python. In this article, we will continue cover set methods, as well as a new literal format for sets.

In addition to expressions, the set object provides methods that correspond to the set operations. For example, the set add method inserts one item; update provides an in-place union, and remove deletes an item by value. Run a dir call on any set instance or the set type name to see all the available methods. Assuming we have mySet and otherSet from the previous article:

>>> mySet = set(‘hello’)
>>> otherSet = set([‘a’,’b’,’c’,’d’,’e’])

then we can perform these operations:

>>> si = mySet.intersection(otherSet)
>>> si
{‘e’}
si.add(‘MORE’)
si
{‘MORE’, ‘e’}
>>> si.update(set([‘X’,’Y’]))
>>> si
{‘X’, ‘MORE’, ‘e’, ‘Y’}
>>> si.remove(‘e’)
si
{‘X’, ‘MORE’, ‘Y’ }

As iterable containers, sets can also be used in operations such as len, for loops, and list comprehensions. Because they are unordered, however, they do not support sequence operations like indexing and slicing.

>>> for item in set('aeiou'):
        print(item * 4)

uuuu
iiii
oooo
aaaa
eeee

Although these set expressions generally require two sets, they often work with any iterable types, such as lists, tuples, and ranges. For example:

mySet.union([‘a’,’b’,’c’])
{‘b’, ‘l’, ‘c’, ‘o’, ‘a’, ‘e’, ‘h’}
mySet.intersection((‘e’,’l’,’p’))
{‘e’, ‘l’}

Using Curly Braces

Python 3.0 adds a new set literal form, using the curly braces formerly reserved for dictionaries. In 3.0 and above, the following are equivalent:

set([‘a’,’b’,’c’])
{‘a’, ‘b’, ‘c’}

Because sets are unordered, unique, and immutable, a set’s items behave much like a dictionary’s keys, and therefore the new syntax makes sense. Regardless of how a set is made, 3.0 and above displays sets using the new literal format. The set built-in is still required in 3.0 to create empty sets and to build sets from existing iterable objects, but the new literal format is convenient for initializing sets of known structure:

>>> {‘a’,’b’,’c’}
{‘c’, ‘b’, ‘a’}

>>> S = {‘a’,’e’,’i’,’o’,’u’}
>>> S.add(‘MORE’)
>>> S
{‘MORE’, ‘i’, ‘o’, ‘a’, ‘e’, ‘u’}

All the set processing operations discussed in the previous article work the same in 3.0 and above, but the result sets print differently:

>>> S1 = {‘a’,’b’,’c’}
>>> S1 & {‘a’,’c’}
{‘c’,’a’}
>>> {‘a’,’e’,’i’,’o’,’u’} | S1
{‘b’, ‘i’, ‘o’, ‘c’, ‘a’, ‘e’, ‘u’}
>>> S1 – {‘a’,’b’}
{‘c’}
>>> S1 > {‘a’,’c’}
True

Note that {} is still a dictionary in Python. Empty sets must be created with the set built-in, and print the same way:

>>> S1 – {‘a’,’b’,’c’}
set()
>>> type({})
<class ‘dict’>

>>> mySet = set()
>>> mySet.add(‘a’)
>>> mySet
{‘a’}

As in Python 2.6, sets created with 3.0 literals support the same methods, some of which allow general iterable operands that expressions do not:

>>> {‘a’,’b’,’c’} | {‘c’,’d’}
{‘c’, ‘b’, ‘a’, ‘d’}
>>> {‘a’,’b’,’c’} | [‘c’,’d’]
Traceback (most recent call last):
File “<pyshell#34>”, line 1, in
{‘a’,’b’,’c’} | [‘c’,’d’]
TypeError: unsupported operand type(s) for |: ‘set’ and ‘list’

>>> {‘a’,’b’,’c’}.union([‘c’,’d’])
{‘c’, ‘b’, ‘a’, ‘d’}
>>> {‘a’,’b’,’c’}.union([‘c’,’d’])
{‘c’, ‘b’, ‘a’, ‘d’}
>>> {‘a’,’b’,’c’}.union(set([‘c’,’d’]))
{‘c’, ‘b’, ‘a’, ‘d’}
>>> {‘a’,’b’,’c’}.intersection((‘c’,’e’,’f’))
{‘c’}
>>> {2,3,4}.issubset(range(-5,5))
True
>>>

External Links:

Set, frozenset at docs.python.org – Official documentation on sets and frozensets for Python 3.4

Python Sets: Part One

Python sets

No, not that kind of set.

One of the core Python data types that we did not mention in earlier articles that perhaps deserves some attention is the set. Sets are a recent addition to Python; they are neither mappings (dictionaries) nor sequences (strings, lists and typles). Sets are created by calling the built-in set function or using new set literals and expressions in 3.0, and they support the usual mathematical set operations.

Introduction to Sets

Creating a set can be done two different ways:

>>> mySet = set(‘hello’)
>>> otherSet = {‘a’,’b’,’c’,’d’,’e’}

len returns the number of unique set items, so we get:
>>> len(otherSet)
5
But if we run the same operation on mySet, we get:
>>> len(mySet)
4

>>> ‘h’ in mySet
True
>>> ‘i’ in mySet
False
>>> mySet.isdisjoint(otherSet)
False
>>> newSet = set(‘he’)
newSet.issubset(mySet)
True

Mathematical set operations are generally valid on sets:

>>> mySet, otherSet
({‘o’, ‘e’, ‘l’, ‘h’}, {‘e’, ‘d’, ‘b’, ‘a’, ‘c’})

>>> mySet & otherSet
{‘e’}

>>> mySet | otherSet
{‘e’, ‘h’, ‘o’, ‘d’, ‘b’, ‘c’, ‘a’, ‘l’}
>>> mySet – otherSet
{‘o’, ‘l’, ‘h’}

There are a few other operations. <= tests whether ever element in the left operand set is in the right operand set. For example: >>> newSet <= mySet
True

But what if we want to return False if the sets are equal? Then we use <:
>> newSet < mySet

True

>>> exactcopy = set(mySet)
>>> exactcopy < mySet

False

>>> exactcopy <= mySet

True

We can flip the operand around, and check to see if the left operand set is a superset of the right operand set:

>>> mySet > newSet
True
>>> mySet >= newSet
True

Sets are mutable; you can add and remove items with the add and remove methods:

>>> otherSet.add(‘f’)
{‘e’, ‘f’, ‘d’, ‘b’, ‘c’, ‘a’}
>>> otherSet.remove(‘c’)
>>> otherSet
{‘e’, ‘f’, ‘d’, ‘b’, ‘a’}

You can also iterate over a set. For example:
>>> for s in mySet:
print(s)

o
e
l
h

Since sets are mutable, there are some things we cannot do with them: for example, we cannot use them as dictionary keys. But objects of type frozenset are immutable. Therefore:

>>> unchangeableSet = frozenset(‘abc’)

Although we can’t add and remove items, we can perform the usual set operations on frozensets, or a combination of sets and frozensets:

>>> mySet | unchangeableSet
{‘o’, ‘e’, ‘b’, ‘h’, ‘c’, ‘a’, ‘l’}

For an example of using frozenset to create keys for a dictionary, here’s a sample:

>>> keySet = frozenset(‘abc’)
>>> names = [ ‘Able’, ‘Baker’, ‘Charlie’ ]
>>> myDict = { }
>>> i = 0
>>> for s in keySet:
myDict[s] = names[i]
i += 1

>>> print(myDict)
{‘a’: ‘Able’, ‘b’: ‘Baker’, ‘c’: ‘Charlie’}

Here, we created an immutable set called keySet, and a list of items to put in our dictionary. We iterate through the set, mapping items in the list to keys in keySet. When we print out the results, we see that each item was successfully mapped to a key.

In the next article, we will continue our look at sets.

External Links:

Set, frozenset at docs.python.org – Official documentation on sets and frozensets for Python 3.4